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ABSTRACT
This paper presents a Multiagent Systems based design ap-

proach for designing a self-replicating robotic manufacturing
factory in space. Self-replicating systems are complex and re-
quire the coordination of many tasks which are difficult to con-
trol. This paper presents an innovative concept using Multia-
gent Systems to design a robotic factory for space exploration.
Specifically presented is an approach for coordinating a concep-
tual model of a self-replicating system. The arrival of a set of
agents on an unknown planet is simulated, whereby these simple
agents will expand into a self-replicating factory using the re-
golith gathered from the surface of the planet. NASA is currently
investing in space exploration missions that consider using the
resources on the surface of other planets, asteroids or satellites.
The challenge of the project is in the implementation of a learn-
ing algorithm that allows a large number of different agents to
complete simultaneous tasks in order to maximize productivity.
The simulation in this work is able to present the coordination
of the agents during the construction of the factory as the pa-

∗Address all correspondence to this author.

rameters of the learning algorithm are changed. System perfor-
mance is measured with a pre-programmed method, using local
and difference rewards. The results show the advantage of using
a learning algorithm to better build the robotic factory.

INTRODUCTION
One of the means of obtaining clean and sustainable power

is a solar power satellite; that is putting large arrays of solar pan-
els into geosynchronous orbit and beaming power down to where
it is needed using microwaves. In orbit, there is no night, and
cloudy days are non-existent, so clean power can be produced
around the clock. Unfortunately, launching everything needed
for this solar power satellite from earth is too expensive at the
current time [1]. Utilizing resources found in space can reduce
the cost of space missions, allowing the development of large-
scale planetary engineering projects. Projects such as terraform-
ing via machine self-replicating systems on Mars or Venus are
proposed, where a large factory will create modifications of the
environment that will allow human colonies on those planets [2].

Most proposed self-replicating systems rely on centralized
control to coordinate activities for replication. These systems are
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difficult to design, and are not very robust. Failure of the central
controller leads to failure of the entire system, so the central-
ized controller must be designed to be very robust which leads
to increased design costs [3]. However, if factory robots and ma-
chines could coordinate themselves using only local actions then
the system could be made much more robust and easier to design.
If one robot fails, the rest of them will still function.

This paper provides a proof-of-concept to coordinate the dif-
ferent activities necessary to operate a self-replicating factory
so that it replicates rapidly using Multiagent Systems. The au-
tonomous robotic manufacturing factory will work with two type
of agents using a learning algorithm. The two types of agents,
called producers and workers, will interact together to construct
the factory using the resources on the surface. Methodology sec-
tion describes the learning algorithm, agents and processes im-
plemented on this paper.

Table (1) presents the four possible case scenarios for the
implementation of a learning algorithm in the system. Agents
have only two possibilities, Learning or NoLearning after the
implementation of the algorithm. For the present work, cases
1 and 2 were simulated and compared in sections Simulator &
Results. The agents workers will be first simulated using a pre-
programmed behavior (Case 1), then using a learning algorithm
(Case 2). The paper shows how the implementation of a learning
algorithm allows the factory to maintain an increasing perfor-
mance. Cases 3 & 4, were not simulated at this time. However,
the producers agents use a set of reward functions on the sim-
ulations which allow the system to behave as a self-replicating
robotic manufacturing factory.

TABLE 1: Implementation of learning algorithm.

Producer

No Learning Learning

Worker No Learning Case 1 Case 3

Learning Case 2 Case 4

As the factory increases the number of agents, the complex-
ity of the system will increase. It will become difficult to control
all the interactions between the agents. In this work, the robotic
manufacturing factory is viewed as a large complex engineer-
ing system. The hypothesis in this paper is that a Multiagent
coordination problem is fundamentally similar to complex sys-
tem design, undertaken with respect to a variety of design ob-
jectives. In complex engineering systems, complexity will arise
in an unpredictable manner in which interactions between com-
ponents and environment modifies system behavior. The self-
replicating manufacturing factory is shown to account for unan-
ticipated events and extreme variation in the system conditions
over time. As such, this paper presents a proof-of-concept for

the design of the factory using a candidate complex system de-
sign approach based on a multiagent coordination.

BACKGROUND
In the 1980s NASA conducted studies on building a self-

replicating factory on the moon in Advanced Automation for
Space Missions. [4] In this study, it was proposed to land a small
seed factory that was capable of expanding itself and replicat-
ing by mining lunar regolith and processing it using solar power.
However, the system required a complicated centralized con-
troller with machine vision, pattern recognition, inference, and
reasoning capabilities to coordinate the factory and troubleshoot
faults. This made the system more complicated to design and
not very robust. This study also outlined a test to determine the
feasibility for this system [5].

More recently, Lackner and Wendt [6] proposed making a
self-replicating system in a desert on earth that was much sim-
pler. This system was to consist of simple small robots they
called auxons running along electrified tracks. To control the
system, they proposed that the auxons in the system follow sim-
ple local rules for interacting with each other to coordinate man-
ufacturing activities. To avoid the need for machine vision and
complicated control schemes, they restricted the auxons to only
move on electrified tracks and scrap auxons that are broken in-
stead of attempting to repair them. This is potentially easier to
design, more robust, and requires less resources to replicate.

However, even though Lackner and Wendt proposed to use
local rules to coordinate self-replicating robot factories, they did
not go into detail of what local rules should be nor did they out-
line the system beyond the conceptual level [7].Chirikjian and
Sukathorn have demonstrated simple self-replicating robots that
pass the basic feasibility test outlined in the advanced automa-
tion for space missions study [8], and did so following simple
local rules in a structured environment. In work done by Eno et
al., self-replicating robots capable of replication in a structured
environment were demonstrated that did not require microcon-
trollers for control [9]. Lee and Chirikjian have demonstrated a
self-replicating robot that can replicate in a minimally structured
environment without using microcontrollers [10]. Moses et al.
recently presented a modular robot capable of assembling copies
of itself from components it could potentially make from raw
materials [11].

Much of this work demonstrates that self-replicating robots
are feasible and that progress is being made in the area of
processing raw materials into usable components. However,
many of the self-replicating robots mentioned here are not ro-
bust enough to handle failure, do not carry out resource gather-
ing operations, and require centralized control. Recent research
on robotics tries to emulate systems from nature. Inspiration is
taken from insect colonies such as: ant and wasp colonies to em-
ulate or derive new coordination algorithms [12].

Reinforcement learning allows agents to learn by reward and
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punishment from interactions with the environment. One com-
mon algorithm from this field is Q− Learning. Q− Learning
can be used to find an optimal action-selection policy for any
given Markov decision process (MDP). It works by learning an
action-value function that ultimately gives the expected utility of
taking a given action in a given state and following the optimal
policy thereafter. The use of Q−Learning for exploration robots
is popular [13]. However, while Q−Learning has been exten-
sively used for exploration robots, it has not been widely used in
the self-replicating robot domain.

Swarm Logic typically consists of a population of simple
agents interacting locally with one another and with their envi-
ronment. The inspiration often comes from nature, especially
biological systems like ants or wasps. The agents follow very
simple rules, and although there is no centralized control struc-
ture dictating how individual agents should behave, local, and to
a certain degree random, interactions between such agents lead
to the emergence of ”intelligent” global behavior, unknown to
the individual agents [14].

This paper combines Q−Learning with SwarmLogic to pro-
duce simple agents (ants) with simple tasks that worked in the
factory (colony), with limited communication. Monekosso and
Remagnino have used a Q−Learning algorithm inspired by the
natural behavior of ants. They use a belief factor that measures
the confidence of the agent in the detected pheromone [15]. Chia-
Feng Juang used a Reinforcement Q-Learning algorithm called
ACO-FQ to optimize the behavior of an ant colony [16]. The
algorithm creates a list of candidate consequent action rules,
and the best combination of actions is selected according to the
pheromone levels and Q values.

Complex System Design
Selection of a design architecture while considering various

design criteria and sources of uncertainty is a fundamental re-
search problem in designing complex systems. Explicitly com-
puting quantitative and qualitative objectives of a complex sys-
tem is generally viewed as the preferred method for formalizing
the design process; however, one of the key problems in typical
large-scale engineering system design is the over-emphasis on
requirement satisfaction for evaluating design alternatives [17].

Rather than making design decisions based primarily upon
requirement (i.e., constraint) satisfaction, Value-Centric Design
(or Value-Driven Design) offers an alternative approach with
the formulation of a system-level design objective that reflects
the true value of the system, which can be subsequently opti-
mized [18]. This is a dramatic change in perspective for system
design, promising a reduction (or elimination) of cost and sched-
ule overruns [19, 20] by identifying high value designs for de-
velopment. Value-Centric Design can be considered part of the
larger field of Decision-Based Design (DBD) [21, 22]. DBD has
been specifically developed in the system design community as
a decision-theoretic approach to selecting a preferred system de-

sign from among the alternatives.

The general approach to formulating a system-level value
function is to quantify the balance between benefits and cost [18,
20]; the model can be developed either from economic measures,
such as surplus value (benefits of a system minus all costs) or
Net Present Value (NPV) [21], or using design metrics such as
complexity or system connectivity [19, 23–27].

Multiagent Coordination
Multiagent coordination is a key research area in agent-

based approaches to automation [28]. One of the biggest chal-
lenges in such an approach is decentralization of control, and in
particular the question of how to incentivize the individual agents
such that they work together [29] to acheive the system objective.
The key challenge is that a system designer needs to address
two major credit assignment problems: structural and tempo-
ral [28, 29] credit. The first addresses who should get credit (or
blame) for system performance, and the second addresses which
key action (at which key time step) is responsible for fulfilling
the objective [30, 31].

The temporal credit assignment problem has been exten-
sively studied through single-agent reinforcement learning [29,
32]. The structural credit assignment problem has also received
attention, and has been addressed by two broad approaches:
reward shaping and organizational structures. Reward shap-
ing aims to shape the system objective such that the action of
agents optimizing local objectives results in desirable system-
level performance [33, 34]Organizational structures decompose
the agents themselves into roles that enable coordinated behav-
ior [35, 36].

One particular research area in the credit assignment prob-
lem focuses upon ensuring that agents’ objectives are aligned
with the system objective (i.e., what is good for the agent is
good for the system), and that the system objective is sensitive
to agents’ actions [37, 38] Providing agents with objectives that
satisfy these two properties (formalized in [38, 39] ) leads to a
solution where key interactions among the agents are implicitly
accounted for. A particular set of agent objectives that achieves
these goals are the difference objectives, which are based on the
difference between the actual performance of the system and
the performance of a counter-factual system in which certain
agents have been removed. Difference objectives have been ex-
tensively studied and applied to real world applications including
air traffic control, multi-robot coordination, and resource alloca-
tion [40, 41]

METHODOLOGY: Robotic Manufacturing Base
This paper proposes the design of a simplified version of

the manufacturing factory with a minimum number of tasks to
perform in a 2D grid environment.
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Environment and Agents
The environment consists of a 2D grid of cells that can be

either regolith or factory elements on which mobile agents can
move and where actions occur in discrete time steps or turns. The
simple factory consists of resource gathering and product placing
workers, power producing solar cells, power distributing pavers,
resource processing producers. This simple representation of a
self-replicating factory necessitates coordination of resource ac-
quisition, power management, production management, and fac-
tory layout that are also necessary with more complex models.

Pavers are power distributing elements on which other fac-
tory elements can be placed and on which workers can charge.
The task of placing pavers represents the task of laying the foun-
dation for the factory. The factory elements of solar cells and
producers are required to be placed on pavers. Connected sets of
pavers share the same amount of power that is available for use
by factory elements on top of them.

Factory elements that use power subtract from the amount
of power available. On top of pavers we can place solar cells,
which serve as power production components. Solar cells add to
this amount of power available each turn. Power cannot be stored
and any unused power is lost at the end of the turn.

The next component which goes on the pavers is the pro-
ducer which represents the materials processing and manufactur-
ing system in our factory. The producer can make anything in
the factory from x regolith in n turns as long as it has enough
electrical power in each turn to do so. Producers can only store
so much regolith and so many finished products and cannot re-
ceive any more regolith or make more products if this capacity is
full. Producers are also agents and can communicate with worker
robots and other producers to coordinate resource gathering and
production activities.

Worker robots, or workers, represent mobile multi-purpose
mining and construction robots. The worker’s main purpose is to
collect regolith from cells that do not have pavers on them and
deposit it into producers for processing. The other purpose of the
worker is to pick up pavers and factory elements and put them
where they need to be to expand the factory. Each of these tasks
uses up a certain amount of charge from the worker’s battery
and the worker must periodically recharge on paver cells. If a
worker runs out of charge and it isn’t on a paver with power
available > 0, it becomes non-functional.

The producer is a non-learning agent and produces the prod-
uct with the highest utility determined by a set of utility func-
tions.

Multiagent coordination problem
The first problem that the robotic manufacturing system will

confront is the accomplishment of the global objective with the
interaction of a large number of agents and processes inside the
factory. The complexity of the project resides on accomplishing
the correct coordination between the tasks of the different agents.

The agents need to receive high f actoredness and learnability
objective alignment [14]. Factoredness defines how well two re-
wards are matched in terms of their assessments of the desirabil-
ity of particular actions. Learnability defines how discernible the
impact of an action is on an agent’s reward function [14]. These
objective alignments will allow the systems to expand rapidly on
the planet with maximized productivity.

The producers need to manage the production and priori-
tize the construction of workers, solar cells, and more producers
according to the needs of the system. The producer makes deci-
sions to produce a certain product as a function of the available
energy and regolith. For example, if the system needs more en-
ergy, the production of solar cells will be prioritized until the en-
ergy requirements are satisfied. The same logic will be used on
the production of the other elements and agents. Workers have
different tasks, they are responsible for the regolith collection and
placement/retrieval of factory elements. The workers will have
to coordinate not only the interactions with the other workers but
also the activities to meet the needs of the producer. Workers and
producers are responsible for the correct storage of resources and
elements in the factory. If this coordination between agents fails,
the factory will stop the manufacturing process and the system
will collapse.

Global Objective
The global objective is to maximize its productivity, which

is defined for this system as the number of products produced at
each time step divided by the amount of products that are already
placed. (How much is produced divided to how much it took to
produce it). This is similar to the productivity measure defined in
[6], which is the amount of mass processed per time step divided
by the mass of the entire system doing the processing.

Since the system does not maintain a measure of product
mass, so the number of products is used instead. The problem
here is that, during the initial time steps, the productivity will
be equal zero. When the system starts no new products will
be produced for a couple time steps, so the productivity will be
zero. Therefore, the productivity of the factory will be poor. As
the factory starts working and growing the value of productivity
will increase. Unfortunately, productivity will vary by a large
amount. To solve this, the productivity measure also counts in-
complete products when taking into account number of products.

A product has a value proportional to how many turns the
producer has carried out producing the product over the number
of turns to complete the product. A product is a quarter of the
fractional amount that is complete if it is being produced, a half
of a product if it is stored in the producer, three quarters of a
product if it is being carried by a worker, and a full product if it
is placed. The regolith carried by a worker is counted as being
half as valuable and is assigned to be the full value if it is stored
in the producer. Productivity is modeled in Eqn. (1).
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P =
abs(dregolith)+dpavers +dsolarcells +dworkers +dproducers

Ppavers +Psolarcells +nworkers +Pproducers
(1)

Where:

dregolith: Difference in regolith
dpavers: Diffe rence # pavers
dsolarcells: Difference # solar cells
dworkers: Difference # workers
dproducers: Difference # producers
Ppavers: Number of pavers placed
Psolarcells: Number of solar cells placed
nworkers: Number of workers present
Pproducers: Number of producers placed

This global objective has high factoredness for the workers
and producers. Both the workers and the producers have actions
that can increase the global objective. We take the absolute value
of the difference in regolith to prevent the system from being pe-
nalized for using up regolith. Using up regolith to make products
is also considered productive. This objective function has high
factoredness for both producers and workers, as each action is
aligned to the global objective. It is worth noting that this global
objective function has low factoredness for the workers, but high
factoredness for the producers. The actions of the worker do not
directly affect the production number of paver, solar cells, work-
ers, or producers. However, the actions of a producer immedi-
ately affect the productivity.

SIMULATOR
NetLogo is used for the simulation environment. NetLogo

is an agent-based programming language with a modelling envi-
ronment. NetLogo implements a grid environment, agents, and
useful functions for agents to interact with the grid environment.

For the simulation a two dimensional 20x20 grid is created
with a torus topology so that the world is continuous. As the
worker do not know where they are, the size of the grid does not
affect the simulations or the results. The size of the grid can be
changed at any time. However a small grid size allows a faster
run time and easy visualization of the simulation. Each grid cell
is created with a random regolith value between: 0 to 10. To
simplify things for the simulation, the environment does not have
any obstacles, and workers will be allowed to go through grid
cells containing other agents or factory elements. In future work
the simulation will consider a large and complex world. The
world will start with this set of elements on the first iteration:

Producer: The producer is a fixed agent that can create
more elements such as: workers, solar cells, pavers and pro-
ducers (self-replicating agent) from the regolith. The construc-
tion of each element needs a defined number of resources, so

each producer will evaluate which element is necessary to com-
plete the global objective. Producers can only store a defined
amount of finished products proportional to the size of the prod-
uct. Whereas a producer can store four pavers, it can only store
one producer. In addition, workers are not stored in the producer
and drive off after they have been produced. Producers are no-
learning agents and produce the most valuable product as long
as they have enough regolith and power to do so. Producers will
store the products in a stack and workers can only remove the
product at the top of the stack.

To communicate with workers, producers also have beacons
on them to coordinate workers. The producers emit three dif-
ferent types of beacons, location beacons, regolith beacons, and
product-done beacons. Location beacons are intended to help the
workers determine where to place things and where pavers are.
The location beacons are always on. Regolith beacons allow the
producer to call workers to obtain regolith. Meanwhile product-
done beacons will call for free workers to take the manufactured
item out of the producer. The signal strength to a location bea-
con decays as an inverse square of distance to the beacon and
the intensity of the signal at the beacon. All location beacons
have the same intensity and are on all the time. The regolith and
product-done beacons have intensities that depend on how full
regolith or products are. Product-done and regolith beacons do
not decay with distance and the worker can sense the producer
with the maximum beacon intensity.

Workers: The workers are mobile agents that can collect re-
golith from grid cells that are not covered by pavers and transport
products from the producer and the world. Workers are allowed
to install producers and solar cells on empty pavers. Workers
can sense the properties of the cell that they are on and the cells
around them. The workers have different sensors that allow them
to detect: factory elements and the amount of regolith on the grid
cell. Workers also have a beacon receiver that receive the dif-
ferent beacon signals emitted from the producers so that they
can coordinate their actions with respect to requirements of the
producers. In addition, the worker has actions to move in the
direction of the strongest signal for each of the beacon types.

Pavers: The pavers work as a network array that transmits
energy and information across continuous pavers. The pavers are
the link between the producer’s, solar cells and worker’s interac-
tion. The eighteen pavers are located at the center of the world.
The elements (producer, workers and solar cell)are placed over
the pavers on the center of the world.

Solar cells: The solar cells produce a constant amount of
energy at each turn and distribute it everything on the pavers
network. Solar cells add to the energy available on each set of
connected pavers, likewise, producers and charging workers de-
crease the amount of energy available on connected pavers. For
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the proper development of the factory the energy flow needs to
work constantly, and each process will require energy.

Each worker automatically recharge whenever they are on a
paver that has power. Producers on the other hand, have differ-
ent energy consumption according to the product it is producing;
for example manufacturing a worker requires more energy than
a paver. Each product that the producer can create requires a de-
fined amount of resources (energy and regolith) and time (turns).
Currently the code is structured so that the individual energy,
time, and regolith costs for each product can be easily changed.

States and Actions of Agents
In the robotic system, workers are dynamic agents. Work-

ers move around the environment and collect regolith and drop
it at the producer. They learn actions from Q-learning which
moves them to get regolith. Workers also collects pavers from
the produces and place them on the surface forming a grid-like
structure. Workers picks up the finished products from the pro-
ducer and place it on the paver. A worker can move to any of
the surrounding cells, mine, transfer regolith to a producer, pick
up a product from a producer, place a factory element, move to
the cell with the lowest beacon value, move to the cell with the
highest beacon value, move toward the producer with the high-
est regolith beacon intensity, or move toward the producer with
the highest product done beacon intensity. The last couple of ac-
tions are high-level actions in that they specify a behavior, in this
case driving toward or away from a producer, instead of a low
level task such as moving up, down, left, or right. This enables
the Q-matrix to be made smaller and learning to be carried out
more efficiently, because the worker does not need to learn the
behavior or keep track of additional states so the behavior can be
implemented.

The state of the agent worker is what is on the cell the
worker is currently on, plus what is on the surrounding cells,
and the charge level of the worker’s battery. What is on a cell
is expected to have a discrete value. For a cell containing only
regolith, a value from 0 to 1 is assigned in increments of 0.25.
For a cell that contains a paver, solar cell, or producer a value
from 2 to 4 is assigned respectively. The state of the battery is
discretized to be either 25%, 50%, 75%, or 100%. The Net-
Logo interface allows the user to modify the initial settings of
the world. The user can change the number of: resources in the
world, agents (producers, workers), and resources needed for the
construction of the different elements in the factory. As the ini-
tial conditions and settings changed, the simulation will present
the different results from the behavior of the system for our anal-
ysis. To keep things simple, workers have a Q−matrix where all
the state and actions will be updated, this list will be use on the
implementation of the learning algorithm. The utility functions,
local rewards, and global objective function are calculated using
the respective estimate Q−matrix the agents. If all workers are
not charged and located off pavers and if all producers cannot

make another worker, then the factory has failed and the simu-
lation is reset. Additionally, if all regolith cells are covered by
pavers then the simulation is also reset. The software interface
allows the user to stop the simulation at any time step.

Learning Algorithm
The learning algorithm for the model is Q− learning. As,

multiple agents are need, Potential-Based Reward Shaping
(PBRS) is used for a significant improvement in the coordina-
tion of agents. With multiple agents and every agent working
optimally Reward Shaping is used to help agents to learn faster.
Reward Shaping includes modifying local rewards, difference re-
wards and global rewards such that agents can learn faster; this
also helps to understand the agent’s behavior [42]. Reinforce-
ment learning is a paradigm which allows agents to learn by re-
ward and punishment from interactions with the environment.
The numeric feedback received from the environment is used to
improve the agent’s actions. The majority of work in the area
of reinforcement learning applies a Markov Decision Process
(MDP) as a mathematical model.

An MDP consists of state, action, action reward pair, where
s is the state space, A is the action space, T (s,a,s′) = Pr(S0|S,A)
is the probability that action a in state s will lead to state s′, and
R(s,a,s′) is the immediate reward r received when action a taken
in state s results in a transition to state s′. MDP deals with find-
ing a policy to maximize the reward. When we know about the
environment we can approach this problem through policy and
value iteration.

Most real life problems, will not have any information re-
garding system dynamics, so value iteration cannot be used. But
the concept of the iterative approach remains the same. Transfer-
ring information about values of states, V (s), or state action pairs
,Q(s,a) pairs falls under the category of Temporal-Difference
learning. These updates are based on the difference of the two
temporally different estimates of a particular state or state-action
value. After each transition, (s,a)→ (s′,a′), in the system, the
state-action values updates by the Eqn. (2) [43]:

Q(s,a)← Q(s,a)+α[r+ γmaxQ′(s′,a′)−Q(s,a)] (2)

Where:
α; is the rate (%) of learning.
γ; is the discount factor.

The discount factor modifies the value of taking action a in
state s, when after executing this action the environment returned
reward r, and moved to a new state s′. The variable α , a value be-
tween 0 and 1, determines the relevance of future rewards in the
update. A value of α = 0 will optimized the immediate reward.
Whereas, values of α closer to 1 will increase the contributions
of future rewards in the future. The immediate reward r, which
is in the update rule given by in above equation, represents the
feedback from the environment. The idea of reward shaping is
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to provide an additional reward which will improve the conver-
gence of the learning agent with regard to the learning speed.
Reward shaping in Q− learning can be represented by Eqn. (3):

Q(s,a)← Q(s,a)+α ∗ [r+F(s,s′)+ γ ∗maxQ′(s′,a′)−Q(s,a)]
(3)

Where:
F(s,s): is the general form of the shaping reward.

Agent Rewards
Local reward for worker
The worker receives a reward for mining regolith propor-

tional to the regolith mined, a reward for delivering regolith pro-
portional to the amount of regolith delivered, and a reward for
placing a factory element. The reward for delivering regolith is
higher than the reward for mining regolith, as delivered regolith
is more valuable than mined regolith. It is worth noting that this
local reward is aligned with the global, the actions of mining, de-
livering regolith, picking up elements, and placing elements all
directly increase the global objective. The total reward given in
one time step will be Eqn. (4) :

Rworker = Regmined ∗w1 +Regdeliver ∗w2 +Rpickup +Rplace (4)

Where:

Regmined : Amount of regolith mined
Regdeliver: Amount of regolith delivered
Rpickup: Reward for picking up a producer, solarcell, or paver
Rplace: Reward for placing a producer, solarcell, or paver
w1: Reward per regolith mined
w2: Reward per regolith delivered

Difference Reward for Worker
A difference reward can be implemented for the worker to

attain a reward with high factoredness and learnability. The dif-
ference reward is the difference between the group utility with
the agent, and without it Eqn. (5)

Di = G(z)−G(z−i) (5)
Where:

G(z): World with agent i
G(z−i: World without agent i

Worker Potential Functions
To help the workers learn faster four different potential func-

tions are used. The first potential function is designed to give the
worker an incentive to recharge, the second gives the worker an
incentive to return to a producer if it is full of regolith, the third
and fourth potential functions encourage the worker to drop off
or pick up products from a producer.

The first potential function,called the ”stay charged” poten-
tial function Eqn. (6), gives the worker a reward proportional to
how close the battery is to being drained if the worker moves

in the direction of increasing location-beacon values. Moving in
the direction of increasing location beacon values means that the
worker is moving toward a location where it can recharge.

The second potential function, called the ”go home” poten-
tial function Eqn. (7), gives the worker a reward proportional to
how close regolith storage is to being full. If the worker moves
in the direction of increasing location beacon values it is likely
to find a producer to drop regolith at. To encourage the work-
ers to drop off regolith and pick up products from the producers,
the Q values are initialized for these associated actions to a high
value. It is worth noting that the first two potential functions use
information that can be determined entirely locally.

Potstaycharged =
Wbc−Wc

Wbc
(6)

Potgohome =
Wregolith

Wregolithcapacity
(7)

Where:

Wregolith: Worker regolith
Wregolithcapacity: Worker charge
Regdelivered : Amount of regolith delivered
Rplacepaver: Reward for placing paver
Rplaceelement : Reward for placing element
w2: Reward per regolith delivered

Worker Q-Matrix Initialization
One problem with the system is how to initialize a newly

produced worker’s Q-matrix. Initializing a worker’s Q-matrix to
empty is inefficient and keeping a population of Q-matrices from
previous runs is difficult due to the variability in population size.
In order to solve this problem, when a worker picks up a product
from a producer it copies the Q-matrix to the producer and any
workers produced by said producer will be initialized with a copy
of the Q-matrix. Workers that pick up a product from a producer
are a good candidate to copy Q-matrices from, because they have
likely already learned to stay charged, mine, and transfer regolith
to a producer. On the initial time step, no producers will have any
products to pick up, so the workers won’t be able to copy their Q-
matrix until regolith has been mined, transferred, and a product
has been produced.

Producer Reward Functions
In the current simulation environment, producers are non-

learning agents that manufacture the product that is most valu-
able to the system. If the system is running low on power it is
more valuable to manufacture a solar cell than a producer be-
cause if power available goes to zero then productivity will de-
crease. As the power available goes up, solar cells are not as valu-
able because productivity is not as constrained by power avail-
able. How valuable a given product is to the system is formally
expressed with a set of functions describing the ’benefit’ of man-
ufacturing that product. This enables the producer to select the
’best’ product to manufacture at each time step.
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Alternatively, since the producers are aware of what other
products are being produced a rough estimate of the future re-
ward can be made. To prevent division to 0, a factor of 0.1 is
added to the denominator on the function.

Reward of a solar cell Eqn. (8) is inversely proportional to
the amount of power available Pa for reasons that have already
been elaborated above.

Usc =
1

Pa +0.1
(8)

Reward of a paver cell Eqn. (9) is inversely proportional to the
number of pavers available Pva, because if the number of pavers
goes to zero then the factory can no longer expand.

Upav =
1

Pva +0.1
(9)

Reward of producers Eqn. (10) is proportional to the power
available and inversely proportional to the regolith capacity Cr. If
regolith and power are not being used, then the system is harvest-
ing more energy and material than it can process and production
should be expanded to compensate. Cr is the system regolith ca-
pacity remaining or how much regolith can be stored minus how
much regolith is held.

Upro =
Pa

Cr +0.1
(10)

Reward of a worker Eqn. (11) is proportional to the global
idle time. A high idle time indicates that there are not enough
workers to remove products from producers and more work-
ers should be added. In addition, while the producer is cur-
rently a non-learning agent, these utility functions might be
used as local rewards or potential functions for learning produc-
ers. Idletime, is the amount of time the producers spend with
productcapacity = 0. For each time step that a producer has
zero capacity it increments a counter, when the capacity goes up,
the counter resets to zero. The global idle time is the sum of all
the these counters divided by the number of producers. This rep-
resents the amount of time the producer is wasting waiting for a
worker to pick up products. w5 is a weighting factor for tuning
the importance of global idle time.

Uw = globalidletime∗w5 (11)

However, at the current time it is difficult to determine the
factoredness of the functions. All of these functions encourage a
producer to start making a product that will immediately increase
the global objective, but the long term impact of that product on
the global objective is difficult to quantify. The functions for the
paver and solar cells are well factored, because producing a solar
cell or paver when power available or pavers available is low
could prevent the system from crashing. It is much more difficult

to determine if the utilities of workers and producers increase
the objective function in the long term. A worker or producer
made could end up decreasing the productivity if said worker or
producer does nothing for the system.

RESULTS
Three scenarios were considered: local rewards, difference

rewards, and pre-programmed behavior. Five simulations were
run of each scenario for 2085 time steps, and each of the five runs
were averaged together. As this data ended up being very noisy
despite averaging five different runs, a running average was used.
These results are plotted on Figure 1. It is worth noting that if the
factory starts from an initially large ”seed” with a large number
of workers, the factory expands very slowly and almost half of
the population of workers is in the uncharged state at every time
step.

For the Pre-programmed behavior, the workers are con-
trolled with a simple state machine and switch between states
of mining and placing elements. The worker also drives back
to base if the battery charge drops below a certain value. In the
mining state, the worker drives off the pavers and moves towards
cells with high regolith values and mines. If it can’t find any
regolith, it drives in the direction of decreasing location beacon
values. Once it is full of regolith it drives in the direction of the
producer which needs regolith the most determined by regolith
beacon values, once it reaches the producer it drops regolith off
and switches to the ”place element” state. In the ”place element”
state it finds a producer, picks up a factory element from it, finds
a place for said element and returns to the mining state.

The Pre-programmed behavior works very well and has high
productivity for about 500 time steps, then the productivity ap-
proaches zero and the factory stops expanding. This is because
the system mines out all the regolith close to the factory until the
regolith is too far away for the workers to reach without needing
to head back and recharge. An example of this state is shown in
Figure 2. The Pre-programmed behavior also leads to overpro-
duction of workers. Workers get stuck in the mining state be-
cause they can’t find any regolith, so they don’t remove products
from the producers leading to producer idle times to be increased.

As a result, more workers are been produced, which get
stuck in the mining state and furthers the problem. The learning
agents with difference rewards and local rewards perform bet-
ter than the pre-programmed behavior and the agents are able
to keep expanding the factory. The policy the workers tend to
learn seems to be to expand one side of the factory. The paths
taken by the workers indicate that they tend to stay in one side
of the factory and this is illustrated in the Figure 3. In addition
the workers tend to keep the distance to regolith from pavers as
short as possible. As the workers expand one side of the factory,
the producers on the far side will stop the manufacturing process
because no worker will deliver regolith.

These inactive producers have indirect negative effect on
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FIGURE 1: Averaged productivity of the system.

the Productivity of the systems, but they are not at capacity so
they don’t increase the system idle time and increase the utility
of workers. In addition, because these producers are not using
power, the power available stays almost constant so the utility
of solar cells stays low and few new solar cells are produced.
This allows more resources to be used on making a continuously
expanding edge of pavers and producers.

Although the productivity is really low and still decreases
for both the difference and local rewards, it does not crash to
zero like the pre-programmed behavior. Local rewards perform
slightly better than difference rewards. This could be due to the
fact that the productivity without a worker can be higher than the
productivity with a worker if said worker is not mining, trans-

ferring regolith, picking up or placing elements. This could be
penalizing the worker for going through the intermediate actions
necessary to accomplish tasks that improve the global objective.
The difference in performance between difference rewards and
local rewards is not very large and could just be noise. Another
possibility is that the potential functions have not been weighted
correctly in comparison to the difference reward.

CONCLUSIONS
In this paper the design of a self-replicating robotic system

was studied using a Multiagent coordination based design ap-
proach. This paper specifically compared pre-programmed vs
learned behavior. A pre-programmed behavior was shown not to
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FIGURE 2: Result of pre-programmed behavior. The large ring
of black cells contain zero regolith, around factory.

FIGURE 3: Learned behavior with paths.

be the best approach to solve the Multiagent-based design prob-
lem in this domain, as the results showed how the system can
collapse. The pre-programmed behavior was used to present the
difference between using a learning algorithm and a programmed
behavior.

The implementation of a learning algorithm was shown to
work much better than a pre-programmed behavior. After run-

ning the code for several simulations the workers were shown
to learn how to continuously expand the edges of the factory as
shown in Figure 3. As workers expand on one side of the fac-
tory, the producers on the opposite side will become inactive.
As a result the productivity of the systems decreases because the
number of inactive agents on the system increases as the factory
expands towards one side, but the productivity of the system does
not completely crash as is the case with the pre-programmed be-
havior.

Even though the local rewards have high factoredness, from
the simulation results, there appears to be quite a bit of room
for improvement as the productivities achieved were very low.
The low productivities could be caused by shortcomings of using
non-learning producers and might be remedied by using produc-
ers that learn. The workers might be purposely keeping produc-
tivity low as this may be the only way for them to prevent the
producers from overproducing a product and crashing the sys-
tem.

The utility functions could be used as a local reward for
the producers, wherein the reward a producer receives is propor-
tional to the utility of the product it made at the time of that prod-
uct’s completion. Shaping difference rewards by potential-based
reward shaping DRiP, is a very good candidate for a producer re-
ward method and the utility functions presented above could be
used as potentials to determine which product a producer should
start making. If the producers are to be kept non-learning, at
the very least it is necessary to implement a function that makes
all producers aware of what other products are being produced.
This way overproduction of the unneeded products does not end
up crashing the system.

Although the difference reward is well suited for many Mul-
tiagent Systems domains, it may not be the best approach for
this complex domain. It is necessary to explore other learning
algorithms that consider agent congestion and small task dis-
tribution such as Assignment-Based Decomposition [44]. The
method consists of decomposing the problem of action selection
into an upper assignment level and a lower task execution level.
The Assignment-Based Decomposition was used to solve a prob-
lem where a large number of collaborative agents are trying to
complete a set of actions assigned determined beforehand with
search. The self-replicating factory could use the same method
to separate the different tasks that workers and producers need to
complete in order to coordinate the performance of the system.

FUTURE WORK
The next objective in this research is to obtain results af-

ter modifying the interactions between the world and the agents.
In this paper the world was simple; but a real self-replicating
robotic factory needs to consider all the dynamics between gath-
ering different type of resources and producing different type of
mechanical and electrical components, using a large number of
processes and agents. The next challenge in this research is the
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implementation of different simultaneous processes that will al-
low the manufacturing of several specific components and re-
sources for the assembly of different agents. This will show how
the system performs when failure modes are introduced inside
the agents and see how the system resolves the failure. The goal
is to challenge the agents as the environment and world represent
a real hazard to the system.

Furthermore, how the failure of a single agent can cause
other agents to fail will be explored as well as whether the system
can adapt to failure. There has been a large amount of work ded-
icated to failure analysis of complex systems at the conceptual
design phase. However, much of this work has been focused on
what are arguably ’single agent systems’. The Multiagent System
should facilitate the failure analysis design approach and obtain
new results.

Failure analysis is important for making a self-replicating
robotic factory a reality, because it can determine whether such
a system is viable. In order for a self-replicating system to be
viable it needs to be able to replace components faster than said
components fail. However, in the real world determining this is
complicated by the fact that failures can cascade into ever larger
failures through the interactions of the components. This work
could open a new frontier in the Multiagent System research
field. Of particular interest, research will explore the field of
complex system design and the analysis of failure propagation.

The design of the robotic factory required the coordinate
work between different agents and process; next steps will con-
sider the agents as the designers of the factory, with the objective
to minimize the cost of construction and maximize the produc-
tion of an engineering system. Parallel to this work, the research
will explore how the propagation of failures inside the agents
components will affect the performance of the system.
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